Skip to main content
Log in

Experimental Investigation of Thermal and Mechanical Properties of Clay Reinforced with Typha australis: Influence of Length and Percentage of Fibers

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study presents the elaboration and characterization of a composite material based on Typha australis and clay for the use of an innovative building material in construction. For this purpose, various percentages ranging from 0 to 55% with a pitch of 15 were used. The aim is to find a better compromise between the thermal and mechanical properties of this composite material. According to this, the influence of the length of the 1 cm and 3 cm fibers was studied. As Typha australis is very porous, the hydric properties of the material studied in this work show that its porosity increases the rate of water absorption following a logarithmic law and the mass loss of the composite material evolves exponentially as a function of time. The mass increases when the percentage of fibers is low. The thermophysical property of Typha australis is 0.06 W/m K. That property allows us to state that Typha australis can be used for thermal insulation. The thermophysical properties of the composite material show that the thermal conductivity decreases as the percentage and length of fibers increase. In fact, the thermal conductivity of the clay is 1.03 W/m K while the mixture of clay with 55% of 1 cm fibers gave a thermal conductivity of 0.146 W/m K. The mixture of clay with the same percentage of 3 cm fibers gave a thermal conductivity of 0.113 W/m K. Nevertheless, the fibers have a negative effect on the mechanical properties and the increase in the length of the fibers improves the flexural strength.

Graphi abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Mazhoud, B.: Elaboration et caractérisation mécanique hydrique et thermique de composites biosourcés. Thèses de doctorat Spécialité Génie Civil, INSA RENNES, France (2017).

  2. Houben, H. H. Centre de recherche et d'application pour la construction en terre. Grenoble villefontaine, France (2006).

  3. Rohlen, U.: Construction en terre crue: construction, rénovation, finitions. Le moniteur, Paris (2013)

    Google Scholar 

  4. Panyakaew, S., Fotios, S.: New thermal insulation boards made from coconut husk and bagasse. Energy Build 43, 1732–1739 (2011). https://doi.org/10.1016/j.enbuild.2011.03.015

    Article  Google Scholar 

  5. Chikhni, M., Agoudjil, B., Boudenne, A., Gherabli, A.: Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build 6, 267–273 (2013). https://doi.org/10.1016/j.enbuild.2013.07.019

    Article  Google Scholar 

  6. Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., Boudenne, A.: Thermal and mechanical performance of natural motarrenforced with date palm fibers for use as insulating materials in building. Energy Build 81, 98–104 (2014). https://doi.org/10.1016/j.enbuild.2014.05.032

    Article  Google Scholar 

  7. Iiczyszyn, F.: Caractérisation expérimentale et numérique du comportement mécanique des agro-composites renforcés par des fibres de chanvres, Thèse de doctorat Spécialité Systèmes Mécaniques et Matériaux, Université de Technologie de Troyes, France (2013).

  8. Galán-Marín, C., Rivera-Gómez, C., Petric, J.: Clay-based composite stabilized with natural polymer and fibers. Constr. Build. Mater. 24, 1462–1468 (2002). https://doi.org/10.1016/j.conbuildmat.2010.01.008

    Article  Google Scholar 

  9. Daher, S., Benazzouk, A., Zerrouki, R., Chargui, S., Langlet, T., Beji, H.: Durability of construction materials based-vegetable particles (rapeseed straw) subjected to wetting and drying cycles. In: International conference on materials and energy ICOME 18, 30 April–04 May 2018, San Sebastian, Spain (2018).

  10. Lachheb, M., Elmarhoune, R., Saadani, R., Agounoun, M., Rahmoune, K.: An experimental investigation on the thermophysical properties of a composite basis of natural fibers of Alfa. Int. J. Mech. Mechatr. Eng. 17, 27–32 (2017)

    Google Scholar 

  11. Brouard, Y., Belayach, N., Hoxha, D., Ranganathan, N., Méo, S.: Mechanical and hygrothermalbehavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Constr. Build. Mater. 10, 196–207 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.140

    Article  Google Scholar 

  12. Lachheb, A., Allouhi, A., ElMarhoune, M., Saadani, R., Kousksou, T., Jamil, A., Rahmoune, M., Oussouaddi, O.: Thermal insulation improvement in construction materials by adding spent coffee grounds: an experimental and simulation study. J. Cleaner Prod. 209, 1411–1419209 (2019). https://doi.org/10.1016/j.jclepro.2018.11.140

    Article  Google Scholar 

  13. Osseni, S.O.G., Apovo, B.D., Ahouannou, C., Sanya, E.A., Jannot, Y.: Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température. Afrique Sci. 12, 119–129 (2016)

    Google Scholar 

  14. Elhamdouni, Y., Khabbazi, A., Benayad, C., Mounir, S., Dadi, A.: Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers. IOP Conf. Series 186, 12035 (2017). https://doi.org/10.1088/1757-899X/186/1/012035

    Article  Google Scholar 

  15. Palumbo, M., McGregor, F., Heath, A., Walker, P.: The influence of two crop by-products on the hygrothermal properties of earth plasters. Build. Environ. 105, 245–252 (2016). https://doi.org/10.1016/j.buildenv.2016.06.004

    Article  Google Scholar 

  16. Bagrg, L., ElAbbassi, I., Kane, C.S.E., Darcherif, A.M., Ndongo, M.: The challenges of local and biosourced materials on thermal performance: Reviex, classification and opportunity. Int J. Eng. Res. Afr. 47, 85–101 (2020). https://doi.org/10.4028/www.scientific.net/JERA.47.85

    Article  Google Scholar 

  17. Caleshenne, A.: Valorisation fouragéne de typha australis en elevage extensif de zebres maures laitiers dans la region du trarza. Dess, Montpellier (2002)

    Google Scholar 

  18. Ozenda, P.: Flora and vegetation of sahara. CNRS, Troisième (2004)

    Google Scholar 

  19. Jha, P.N., Kumar, A.: Endophytic colonization of typhaaustralis by a plant growth promoting bacterium klebsiellaoxytoca strain GR-3. J. Appl. Microbiol. 103, 1311–1320 (2007). https://doi.org/10.1111/j.1365-2672.2007.03383.x

    Article  Google Scholar 

  20. Moghaddem, S.M.K., Mortazavi, S.M.: Physical and chimical proprieties of natural fibers extracted from typhaaustralis leaves. J. Nat Fibers 13, 353–361 (2016). https://doi.org/10.1080/15440478.2015.1029199

    Article  Google Scholar 

  21. Duko, J.A.: Handbook of Energy Crops. Purdue University, West Lafayette (1983)

    Google Scholar 

  22. Kouwanou, C.S., Dossa, C.P.A., Adjou, E.S., Issiakou, M., Wotto, V.D., Sohounhloué, D.C.K.: Valorization of typhaaustralis stems in bioethanol production using enzymatic hydrolysis and biofermentation. Acad. J. Chem. 4, 90–95 (2019). https://doi.org/10.32861/ajc.410.90.95

    Article  Google Scholar 

  23. Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M., Azilinon, D.: Thermo-mechanical characterization of a building material based on Typha. J. Build. Eng. 9, 142–146 (2017). https://doi.org/10.1016/j.jobe.2016.12.007

    Article  Google Scholar 

  24. Niang, I., Maalouf, C., Moussa, T., Bliard, C., Samin, E., Thomachot-Schneider, C., Lachi, M., Pron, H., Mai, T.H., Gaye, S.: Hygrothermal performance of various Typha–clay composite. J. Build. Phys. 42, 1–20 (2018). https://doi.org/10.1177/1744259118759677

    Article  Google Scholar 

  25. Diatta, M.T., Gaye, S., Thiam, A., Azilinon, D.: Détermination des propriétés thermo-physique et mécanique du Typha Australis. Cong. SFT, Perpignan (2011)

    Google Scholar 

  26. Ponnukrishnan, P., Ponnukrishnan, P., Thanu, M.C., Richard, S.: Mechanical characterisation of Typha domingensis natural fiber reinforced polyester composites. Am. Int. J. Res. Sci. Technol. Eng. Math. 3, 241–244 (2014)

    Google Scholar 

  27. Abdelhakh, A. O., Saleh, A. M. Soultan, Sow, D., Menguy, G., Gaye, S.: Improving energy efficiency of buildings by using a light concrete based on the typhaaustralis. In: 3rd International Conference on Renewable Energies for Developing Countries (REDEC), pp. 13–15 juillet (2016). https://doi.org/10.1109/REDEC.2016.7577512.

  28. Barry, M.E., Taïbi, A.N.: Du Parc National du Diawling à la Réserve de Biosphère Transfrontalière: jeux d'échelles à l'épreuve du développement durable dans le bas delta du fleuve Sénégal, pp. 147–156. Presses Universitaires de Bordeaux, Bordeaux (2011)

    Google Scholar 

  29. Amadou, B.A.: Le parc national du diawling: experience de cogestion pour la restauration des plaines inondables, Strategies for wise use of wetlands: Best practices in participatory management. Dakar, Senegal (1998)

    Google Scholar 

  30. Al-Ajlan, S.: Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Thermal Eng. 26, 2184–2191 (2006). https://doi.org/10.1016/j.applthermaleng.2006.04.006

    Article  Google Scholar 

  31. He, Y.: Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochimicaacta 426, 122–129 (2005). https://doi.org/10.1016/j.tca.2005.07.003

    Article  Google Scholar 

  32. Warzoha, R.J., Fleischer, A.S.: Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology. Int. J. Heat Mass Transfer. 71, 790–807 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.062

    Article  Google Scholar 

  33. Laibi Babatoundé, Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de Kénaf à des terres argileuses .Thèses de doctorat Spécialité Chimie, Université de Caen Normandie, France, en partenariat international avec l’Université d’AbomeyCalavi, Benin (2017).

  34. Asdrubali, F., Dalessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015). https://doi.org/10.1016/j.susmat.2015.05.002

    Article  Google Scholar 

  35. Omrani, H., Hassini, L., Benazzouk, A., Beji, H., Elcafsi, A.: Elaboration and characterization of clay-sand composite based on Juncusacutusfibers. Constr. Build. Mater. 238, 117712 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117712

    Article  Google Scholar 

  36. Brzyski, P., Barnat-Hunek, D., Suchorab, Z., Łagód, G.: Composite materials based on hemp and flax for low-energy buildings. Materials 10, 510 (2017). https://doi.org/10.3390/ma10050510

    Article  Google Scholar 

  37. Wuzella, G., Mahendran, A.R., Bätge, T., Jury, S., Kandelbauer, A.: Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Ind. Crops Prod. 33, 683–689 (2011). https://doi.org/10.1016/j.indcrop.2011.01.008

    Article  Google Scholar 

  38. Marques, B., Tadeu, A., Antonio, J., Almeida, J., Brito, J.D.: Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products. Constr. Build. Mater. 239, 117851 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117851

    Article  Google Scholar 

  39. Wang, Y.X., Guo, P.P., Ren, W.X., Yuan, B.X., Yuan, H.P., Zhao, Y.L., Shan, S.B., Cao, P.: Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement. Int. J. Geomech. 17, 1532–3641 (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000998

    Article  Google Scholar 

  40. Olacia, E., Pisello, A.L., Chiodo, V., Maisano, S., Frazzica, A., Cabeza, L.F.: Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Constr. Build. Mater. 239, 117669 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117669

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Cooperation and Cultural Action of the French Embassy for the funding provided through the French Government scholarship to carry out this research. The authors also thank the “Laboratoire National des travaux publics’’ (Nouakchott-Mauritania) for the geotechnical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Labouda Ba.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, L., El Abbassi, I., Ngo, TT. et al. Experimental Investigation of Thermal and Mechanical Properties of Clay Reinforced with Typha australis: Influence of Length and Percentage of Fibers. Waste Biomass Valor 12, 2723–2737 (2021). https://doi.org/10.1007/s12649-020-01193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01193-0

Keywords

Navigation