Abstract
This study presents the elaboration and characterization of a composite material based on Typha australis and clay for the use of an innovative building material in construction. For this purpose, various percentages ranging from 0 to 55% with a pitch of 15 were used. The aim is to find a better compromise between the thermal and mechanical properties of this composite material. According to this, the influence of the length of the 1 cm and 3 cm fibers was studied. As Typha australis is very porous, the hydric properties of the material studied in this work show that its porosity increases the rate of water absorption following a logarithmic law and the mass loss of the composite material evolves exponentially as a function of time. The mass increases when the percentage of fibers is low. The thermophysical property of Typha australis is 0.06 W/m K. That property allows us to state that Typha australis can be used for thermal insulation. The thermophysical properties of the composite material show that the thermal conductivity decreases as the percentage and length of fibers increase. In fact, the thermal conductivity of the clay is 1.03 W/m K while the mixture of clay with 55% of 1 cm fibers gave a thermal conductivity of 0.146 W/m K. The mixture of clay with the same percentage of 3 cm fibers gave a thermal conductivity of 0.113 W/m K. Nevertheless, the fibers have a negative effect on the mechanical properties and the increase in the length of the fibers improves the flexural strength.
Graphi abstract
Similar content being viewed by others
References
Mazhoud, B.: Elaboration et caractérisation mécanique hydrique et thermique de composites biosourcés. Thèses de doctorat Spécialité Génie Civil, INSA RENNES, France (2017).
Houben, H. H. Centre de recherche et d'application pour la construction en terre. Grenoble villefontaine, France (2006).
Rohlen, U.: Construction en terre crue: construction, rénovation, finitions. Le moniteur, Paris (2013)
Panyakaew, S., Fotios, S.: New thermal insulation boards made from coconut husk and bagasse. Energy Build 43, 1732–1739 (2011). https://doi.org/10.1016/j.enbuild.2011.03.015
Chikhni, M., Agoudjil, B., Boudenne, A., Gherabli, A.: Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build 6, 267–273 (2013). https://doi.org/10.1016/j.enbuild.2013.07.019
Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., Boudenne, A.: Thermal and mechanical performance of natural motarrenforced with date palm fibers for use as insulating materials in building. Energy Build 81, 98–104 (2014). https://doi.org/10.1016/j.enbuild.2014.05.032
Iiczyszyn, F.: Caractérisation expérimentale et numérique du comportement mécanique des agro-composites renforcés par des fibres de chanvres, Thèse de doctorat Spécialité Systèmes Mécaniques et Matériaux, Université de Technologie de Troyes, France (2013).
Galán-Marín, C., Rivera-Gómez, C., Petric, J.: Clay-based composite stabilized with natural polymer and fibers. Constr. Build. Mater. 24, 1462–1468 (2002). https://doi.org/10.1016/j.conbuildmat.2010.01.008
Daher, S., Benazzouk, A., Zerrouki, R., Chargui, S., Langlet, T., Beji, H.: Durability of construction materials based-vegetable particles (rapeseed straw) subjected to wetting and drying cycles. In: International conference on materials and energy ICOME 18, 30 April–04 May 2018, San Sebastian, Spain (2018).
Lachheb, M., Elmarhoune, R., Saadani, R., Agounoun, M., Rahmoune, K.: An experimental investigation on the thermophysical properties of a composite basis of natural fibers of Alfa. Int. J. Mech. Mechatr. Eng. 17, 27–32 (2017)
Brouard, Y., Belayach, N., Hoxha, D., Ranganathan, N., Méo, S.: Mechanical and hygrothermalbehavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Constr. Build. Mater. 10, 196–207 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.140
Lachheb, A., Allouhi, A., ElMarhoune, M., Saadani, R., Kousksou, T., Jamil, A., Rahmoune, M., Oussouaddi, O.: Thermal insulation improvement in construction materials by adding spent coffee grounds: an experimental and simulation study. J. Cleaner Prod. 209, 1411–1419209 (2019). https://doi.org/10.1016/j.jclepro.2018.11.140
Osseni, S.O.G., Apovo, B.D., Ahouannou, C., Sanya, E.A., Jannot, Y.: Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température. Afrique Sci. 12, 119–129 (2016)
Elhamdouni, Y., Khabbazi, A., Benayad, C., Mounir, S., Dadi, A.: Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers. IOP Conf. Series 186, 12035 (2017). https://doi.org/10.1088/1757-899X/186/1/012035
Palumbo, M., McGregor, F., Heath, A., Walker, P.: The influence of two crop by-products on the hygrothermal properties of earth plasters. Build. Environ. 105, 245–252 (2016). https://doi.org/10.1016/j.buildenv.2016.06.004
Bagrg, L., ElAbbassi, I., Kane, C.S.E., Darcherif, A.M., Ndongo, M.: The challenges of local and biosourced materials on thermal performance: Reviex, classification and opportunity. Int J. Eng. Res. Afr. 47, 85–101 (2020). https://doi.org/10.4028/www.scientific.net/JERA.47.85
Caleshenne, A.: Valorisation fouragéne de typha australis en elevage extensif de zebres maures laitiers dans la region du trarza. Dess, Montpellier (2002)
Ozenda, P.: Flora and vegetation of sahara. CNRS, Troisième (2004)
Jha, P.N., Kumar, A.: Endophytic colonization of typhaaustralis by a plant growth promoting bacterium klebsiellaoxytoca strain GR-3. J. Appl. Microbiol. 103, 1311–1320 (2007). https://doi.org/10.1111/j.1365-2672.2007.03383.x
Moghaddem, S.M.K., Mortazavi, S.M.: Physical and chimical proprieties of natural fibers extracted from typhaaustralis leaves. J. Nat Fibers 13, 353–361 (2016). https://doi.org/10.1080/15440478.2015.1029199
Duko, J.A.: Handbook of Energy Crops. Purdue University, West Lafayette (1983)
Kouwanou, C.S., Dossa, C.P.A., Adjou, E.S., Issiakou, M., Wotto, V.D., Sohounhloué, D.C.K.: Valorization of typhaaustralis stems in bioethanol production using enzymatic hydrolysis and biofermentation. Acad. J. Chem. 4, 90–95 (2019). https://doi.org/10.32861/ajc.410.90.95
Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M., Azilinon, D.: Thermo-mechanical characterization of a building material based on Typha. J. Build. Eng. 9, 142–146 (2017). https://doi.org/10.1016/j.jobe.2016.12.007
Niang, I., Maalouf, C., Moussa, T., Bliard, C., Samin, E., Thomachot-Schneider, C., Lachi, M., Pron, H., Mai, T.H., Gaye, S.: Hygrothermal performance of various Typha–clay composite. J. Build. Phys. 42, 1–20 (2018). https://doi.org/10.1177/1744259118759677
Diatta, M.T., Gaye, S., Thiam, A., Azilinon, D.: Détermination des propriétés thermo-physique et mécanique du Typha Australis. Cong. SFT, Perpignan (2011)
Ponnukrishnan, P., Ponnukrishnan, P., Thanu, M.C., Richard, S.: Mechanical characterisation of Typha domingensis natural fiber reinforced polyester composites. Am. Int. J. Res. Sci. Technol. Eng. Math. 3, 241–244 (2014)
Abdelhakh, A. O., Saleh, A. M. Soultan, Sow, D., Menguy, G., Gaye, S.: Improving energy efficiency of buildings by using a light concrete based on the typhaaustralis. In: 3rd International Conference on Renewable Energies for Developing Countries (REDEC), pp. 13–15 juillet (2016). https://doi.org/10.1109/REDEC.2016.7577512.
Barry, M.E., Taïbi, A.N.: Du Parc National du Diawling à la Réserve de Biosphère Transfrontalière: jeux d'échelles à l'épreuve du développement durable dans le bas delta du fleuve Sénégal, pp. 147–156. Presses Universitaires de Bordeaux, Bordeaux (2011)
Amadou, B.A.: Le parc national du diawling: experience de cogestion pour la restauration des plaines inondables, Strategies for wise use of wetlands: Best practices in participatory management. Dakar, Senegal (1998)
Al-Ajlan, S.: Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Thermal Eng. 26, 2184–2191 (2006). https://doi.org/10.1016/j.applthermaleng.2006.04.006
He, Y.: Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochimicaacta 426, 122–129 (2005). https://doi.org/10.1016/j.tca.2005.07.003
Warzoha, R.J., Fleischer, A.S.: Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology. Int. J. Heat Mass Transfer. 71, 790–807 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.062
Laibi Babatoundé, Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de Kénaf à des terres argileuses .Thèses de doctorat Spécialité Chimie, Université de Caen Normandie, France, en partenariat international avec l’Université d’AbomeyCalavi, Benin (2017).
Asdrubali, F., Dalessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015). https://doi.org/10.1016/j.susmat.2015.05.002
Omrani, H., Hassini, L., Benazzouk, A., Beji, H., Elcafsi, A.: Elaboration and characterization of clay-sand composite based on Juncusacutusfibers. Constr. Build. Mater. 238, 117712 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117712
Brzyski, P., Barnat-Hunek, D., Suchorab, Z., Łagód, G.: Composite materials based on hemp and flax for low-energy buildings. Materials 10, 510 (2017). https://doi.org/10.3390/ma10050510
Wuzella, G., Mahendran, A.R., Bätge, T., Jury, S., Kandelbauer, A.: Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Ind. Crops Prod. 33, 683–689 (2011). https://doi.org/10.1016/j.indcrop.2011.01.008
Marques, B., Tadeu, A., Antonio, J., Almeida, J., Brito, J.D.: Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products. Constr. Build. Mater. 239, 117851 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117851
Wang, Y.X., Guo, P.P., Ren, W.X., Yuan, B.X., Yuan, H.P., Zhao, Y.L., Shan, S.B., Cao, P.: Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement. Int. J. Geomech. 17, 1532–3641 (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000998
Olacia, E., Pisello, A.L., Chiodo, V., Maisano, S., Frazzica, A., Cabeza, L.F.: Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Constr. Build. Mater. 239, 117669 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117669
Acknowledgements
The authors would like to thank the Department of Cooperation and Cultural Action of the French Embassy for the funding provided through the French Government scholarship to carry out this research. The authors also thank the “Laboratoire National des travaux publics’’ (Nouakchott-Mauritania) for the geotechnical tests.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ba, L., El Abbassi, I., Ngo, TT. et al. Experimental Investigation of Thermal and Mechanical Properties of Clay Reinforced with Typha australis: Influence of Length and Percentage of Fibers. Waste Biomass Valor 12, 2723–2737 (2021). https://doi.org/10.1007/s12649-020-01193-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01193-0